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Introduction and motivation



Two classes of abstract delay equations

Given a Banach space Y and an initial history ¢ : [=h,0] — Y,
extend ¢ to x : [—h,1,) — Y for some 0 < 7, < oo.
Two of many ways:

RE Prescribe x(t) as function of x, for ¢ > 0.

DDE Prescribe derivative x(¢) as function of x; for r > 0.

Shift the extension on [t — A, t] back to [—#, 0].

Obtain a dynamical system on a state space X of histories.



initial condition ¢

history x; at time ¢

Y



Adjoint semigroups for delay equations

TYPE STATE SPACEX DE DEg

RE  IP([-h,0,Y)  x(t) = F(x) x(t) =0

DDE  C([—h,0],Y)  i(t) = Bx(¢) + F(x;) x(t) =

F : X — Y is a continuous operator,
B generates a Cy-semigroup S on Y.

Solutions of (DEg + IC) define a Cy shift semigroup T on X.



Adjoint semigroup theory for Ty on X gives a canonical embedding
JiX = Xo*, (x® jx) = (x,x2).

Perturbation of the w*-generator AS)* of TéD* with an operator

G : X — X©* gives a semilinear differential equation in X®*,
& (o u)(1) = A jult) + Glul1)),
suggesting an abstract integral equation in X,

u(t) = To(t)p +j! /Ot T5* (t — 7)G(u(T)) dr. (IE)



For RE and DDE, in general 7Ty is not sun-reflexive.

Still, there is a bounded embedding £ : ¥ — X®* such that!

1. for all continuous w : R, — Y and allz > 0,
t
/ TS (t — 7)ew(T) dr € jX,
0

and

2. for a given initial history ¢ € X, solutions of (IE) with

perturbation

G=/loF:X—>Y — X%

are in bijection with solutions of (DE + IC).

![Diekmann and Gyllenberg, 2008] for RE and [Janssens, 2019] for DDE.
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Definitions

Let Ty be a Cy-semigroup on a Banach space X over K = R or K = C.
Do not assume that 7 is sun-reflexive.

Let J be a non-degenerate interval, and
Q=A{(t,s) e I xJ : t>s}.

Given a continuous function f : J — X®*, study the range in X®* of

the convolution map

Q> (t,5) — /t TS (t — 7)f (1) dT € X©%.



. A continuous function f : J — X®* is admissible for T if
t
/ T*(t—7)f(r)dr € jX  forall (1,5) € Q.
N

. A closed subspace Xy of X®* is an admissible range for T if
every continuous function f : J — X is admissible for Tj.

This is independent of the interval J.

. A continuous G : X — X®* is an admissible perturbation for Ty

if G takes its values in some Tjp-admissible range.



An admissibility test

Lemma
Let Xo be a closed subspace of X“*. If there exists an interval J such
that every constant function on J into X is Ty-admissible, then X is

a To-admissible range.

Proof.

0. We can assume that J is compact.
1. Linear functions on J into X are Tp-admissible.

2. The same is true for affine functions,

and for continuous piecewise affine functions.
3. The latter function class is dense in C(J, Xy).

4. Uniform convergence preserves admissibility. O



Three questions about admissibility

maximality

Does there exist a maximal admissible range for 7(?

robustness
Let Xy be an admissible range for 7.
Let T be obtained by perturbing Ty with L € £(X, Xy).

Is Xy an admissible range for T as well?
splitting

Letf : [0,,) — Xo be continuous, for some 0 < 7, < co.

Is perturbing T by f equivalent to perturbing Ty by L + f.
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Maximality. The subspace X~

For A € K with Re X sufficiently large, the resolvent
RN\ AS*) = (M — AS*) ™!
exists in £(X®*). Define?
X9* = {xP* € X% : RO AGT)XOT € X}

This does not depend on .
Xf)D X is closed and T(()D*—invariant, and

coincides with X®* if and only if T} is sun-reflexive.

XéD * is instrumental in the next two theorems about admissibility?.

2[Van Neerven, 1992]
3[Janssens, 2020]



Theorem

Xéa X is an admissible range for Ty that is maximal for inclusion
Proof of admissibility.

0. Show that constant functions into X(()D * are admissible for Ty and

apply testing lemma. For arbitrary x®* € X5'*,
1. Observe that y§* := R(\, AJ*)x®* is in D(AS*) and in jX.

2. Evaluate, for any s < 1,
t t
/ Tg*(t — )% dr = / T(SD*(t —7)(M — Agj*)y?* dr
S N

t
= /\/ Tg)*(t — T)yi)* dr — (TOQ*(I —5) — I)y?*7
S

and note that the RHS sits in jX. ]



Proof of maximality.

0. Let Xy be an admissible range for Ty. For arbitrary x®* € X,

1. Verify the adjoint Laplace transform representation

t

RN\, AG" )" = zl—l>r<r>lo ; TS*(1)e MxO% dr, #)

with convergence in the norm of X®*,

2. Evaluate, for any r > 0,
t t
/ TSH(T)e Mx* dr = e_)"/ TO* (1 — 7)eMxO% dr,
0 0

and note that the RHS sits in jX.

3. Apply (#) and use norm-closedness of jX. O



Corollary

A continuous perturbation G : X — X©* is admissible for T, if and

only if G takes its values in X(C)D x,



Robustness and splitting

Theorem

Robustness
Let T be obtained by perturbing Ty with L € L(X, XO®X ).

Then X(C)D * is an admissible range for T as well.

Splitting
Letf:J — X(SDX be continuous on a compact time interval J.

The unique solution u : J — X of

() = Toliyo -+ [ T - D) 4 fdr (D)

is given by

u(t) =T(1)p+ ! /0 t TO%(t — 7)f (1) d.



Proof.
0. Suppose that ¢ € j'D(AS*) and f : J — X§'* Lipschitz.

1. There exist Lipschitz u,, : J — X and f,, : J — XéD * such that

un(t) = To()p +j1 tTéD*(t — 7)[Lttgy (T) + frn(T)] d,
0

forall t € J, and f,, — f and u,, — u, s uniformly on J,

where u, s : J — X is the unique solution of (7).

2. Use the regularity of ¢, u,,, and f,, to w*-differentiate and split,

d*(j o ) (1) = AG™ jum(t) + Lun(t) + fiu()
= AG*j”m(t) +fm(t)

for t € J, with u,,(0) = ¢.



. W*-integrate from arbitrary s to ¢ in J,

jum(t) — (¢ — 8t (5) = / Tt — () d7

N
hence f,, is admissible for 7'

. Let m — oo uniformly on J to conclude f is T-admissible, and
t
ues0) =T+ [ 1= f(r)dr.
0

. The general case for ¢ € X and f € C(J, X(?X) follows from the

continuity of
X x C(J,X5™) 3 (p.f) = ups € C(J,X)

and density of j 7' D(A*) x Lip(J,X{™). M



Corollary (of maximality and robustness)

The maximal admissible ranges for T and Ty coincide: X®* = X(C)DX.
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Implications for nonlinear local analysis

Do not insist on sun-reflexivity of X for Ty. Instead,

systematically require all perturbations to take values in X©*.
Let G : X — X®* be C* for k > 1 and G(0) = 0.
Variation-of-constants

u(t) = T(t — s)u(s) + ;! /t TO*(t — 7)R(u(T)) dr, s <t,

is well-defined, with L := DG(0) and R := G — L into X®*.

This has led to relatively easy generalizations of sun-reflexive results,

such as local center manifold theorems?.

4Compare [Diekmann et. al., 1995] with [Janssens, 2020, Theorems 39 and 41]



Existing and new motivation

These theorems underlie bifurcation analysis in abstract DDE models>,
x(t) = Bx(t) + F(x,), t>0.
with S generated by B immediately norm-continuous on Y.

So the cases B = 0 and B # 0 are treated on an equal footing.

Recent motivation comes from

DDE second-order Cauchy problems on Y with delayed
feedback control (with S.M. Verduyn Lunel), and

RE + DDE models of structured populations (with O. Diekmann).

3[V. Gils, Janssens, Kuznetsov, Visser, 2013], [Spek, V. Gils, Kuznetsov, 2019]
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